539 Antideniatives (Anti-D)

key points: D Definition of anti-D and the most general anti-D of fax.

3 Finding anti-D using derivative table and linear rules.

3 Velocity and position as anti-D.

Definition: If F(x) = f(x), then F(x) is ONE ANTIDERIVATIVE of f(x). F(x) + C is called THE MOST GENERAL ANTIDERIVATIVE of f(x), where C is arbitrary constant.

eg./. $(x^2)'=2X$, 2X is the derivative of X^2 ; X^2 is one anti-D of 2X. $(x^2+5)'=2X$, 2X is the derivative of X^2+5 ; X^2+5 is one anti-D of 2X. For any constant C, $(X^2+C)'=2X$, 2X is the derivative of X^2+C , X^2+C is one anti-D of X^2+C is all all the most general anti-D of 2X.

· (Anti) derivative table:

$$f(x) = f(x)$$
.

If $x^n = f(x)$.

 $f(x) = f(x$

. Linear rule: If fix her anti-D Fix, gox her anti-D G(x), then
a.f(x) + b.g(x) her anti-D a.f(x) + b.G(x)

eg. Z. Find one anti-D of (a) $f(x) = 2x^5$, (b), $f(x) = \frac{\sin x}{2}$, (c) $f(x) = 2x^5 + \frac{\sin x}{2}$ (a): $f(x) = 2 \cdot \frac{1}{2} \cdot \frac{1}{2}$

A key anti-D formula: $\left(\times^{n} \xrightarrow{\text{anti-D}} \xrightarrow{n+1} \times^{n+1} \right)$, $n \neq -1$ eg 3. Find one anti-DF for the following functions of: (a): $f(x)=1 \Rightarrow F(x)=x$; (a): $f(x)=-\frac{1}{3} \Rightarrow F(x)=-\frac{1}{3} \cdot x$. (formula such (x=0)) (b): $f(x)=5x' \Rightarrow F(x)=5 \cdot \frac{1}{1+1} \cdot x'' = 5 \cdot \frac{1}{2} \cdot x'' = 5 \cdot x'' = 5 \cdot \frac{1}{2} \cdot x'' = \frac{1}{2} \cdot x$ (c): $f(t) = t^3 \Rightarrow f(t) = \frac{1}{3+1} \cdot t^{3+1} = \frac{1}{4} \cdot t^4$ (formula with n=3) Remark: The formula is also applied to negative n and fraction n. A (d): $f(x) = \frac{1}{x^2} \Rightarrow f(x) = x^{-2} \Rightarrow F(x) = \frac{1}{-2+1} \cdot x^{-2+1} = -x^{-1} = \frac{1}{x}$ (n=-2)A shoulding to the definition of Anti-D, the (most general) anti-D of fix) is fix)+C. With extra undition on fix), we can obtaining the value of C. egt. Suppose f(x) = sin X and $f(\frac{\pi}{2}) = 0$. Find f(x). Solvain: fix) is the arth-D of $f'(x) = \sin x$. Therefore, $f(x) = -\cos x + C$ Furthermore, plug x== into fix=-co>x+C, we have, $f(\underline{\mathcal{G}}) = -\omega \underline{\mathcal{G}} + C = 0 = -0 + C \text{ since } f(\underline{\mathcal{G}}) = 0, \omega \underline{\mathcal{G}} = 0$ $\Rightarrow C = 0 \text{ plug into } f(x) = -\omega x + C.$ (fx)=-68X Remork: When you get the spression for fix), it is unwinent to double check your answer by computing fix) and fix). · Maing particle. Position: Stt) Velocity: V(t) Acceleration: alt) Relation: S(t) = V(t), V(t) = a(t)S(t) is the arti-D of V(t); V(t) is the arti-D of a(t) Related problems: Give VIED, And SED. Give alt), find VIED.

eg 5. A particle is month about a with acceleration given by att = 4t3+2sint (f16). (wen the initial value velocity is V(0) = 5 m/s, find the velocity at time $t=\pi$ seconds. Hint: V is the (general) anti-D of a(t). Pad the general anti-D of 4t3+25ht. Then use the initial condoilor to determine the constant C Solution: $t^3 = 4 \cdot t^4 = 4 \cdot t^4 = 3$; sint $\frac{\text{and}}{\text{cost}} = \frac{1}{3+1} \cdot t^{3+1} = \frac{1}{4} \cdot t^4 = 3$; sint $\frac{\text{and}}{\text{cost}} = \frac{1}{3+1} \cdot t^{3+1} = \frac{1}{4} \cdot t^4 = \frac{1}{3+1} \cdot t^{3+1} = \frac{1}{3+1} \cdot$ The general anti-D of alt)=4 t^3 +2 of t is $4(t^4) + 2(-cot) + C$ ie (Vt)=4(4t+)+2(-6st)+C=(t+-26st+C) Plug in t=0: $5=V(0)=0^4-2680+C=0-2+C$ since 680=1. \Rightarrow 5=-2+ C \Rightarrow C=7 , thug back into V's expression. $V(t) = t^4 - 268t + 7$ Then evaluate V at t=R, i.e., $V(R)=R^4-2.68R+7$; COSR=-1. $=R^4+9$ m/s

*4. y=fx> goes trough (1.0) means f(i)=0. The slope of the tangent line = $f'(x) = \frac{6}{3} - \frac{3}{25} = 6x^3 - 9x^5$ Then use the method in e.g.4 to find fox). $\times 6.$ $3\sqrt{x} = x^{-\frac{1}{3}}$, $3\sqrt{x} = x^{\frac{2}{3}}$. Apply the anti-D formula with $n = -\frac{1}{3}$ and $n = \frac{3}{3}$ *6. (X+4)" has anti-D + (X+4)". For example, (X+4)3 anti-D + (X+4)4. 27. I mph = $\frac{1 \text{ mile}}{1 \text{ hour}} = \frac{22}{15}$ ft/second. (X+4)4 anti-D 5(X+4)5 Decelerate at 26 ft/s means a(t)=-26 ft/s2 => V(t)=-26.t ft/s

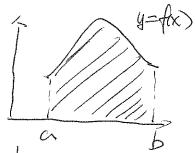
*3. Rewrite $f(x) = \frac{7-5 \cdot x^3}{x^3} = \frac{7}{x^3} - \frac{5 \cdot x^9}{x^3} = 7 \cdot x^{-3} - 5 \cdot x^6$

Hints for WW.

§ 4) Area and distance

Goal: Give y = fex) from x = a to x = b.

We want to find the area under the graph y = fex) from x = a to x = b.



· Estimate by several rectangles of equal midth.

eg. $y=x^2+1$ from x=0 to x=3Divide [c, 3] into three intervals Set the following table

 $\frac{x}{y=x+1} = \frac{0}{1} = \frac{2}{3}$ (Hight) $y=x+1 = \frac{1}{2} = \frac{3}{5} = \frac{3}{10}$

19=x+1

Three internals [0,1], [1,2], [2,3]
left endpots

Night endpots

lapor sum usilg right andpoints of each inverval.

1.2 + 1.5 + 1.10 = 1.(2+5+10) = 17.

Lower sum using left endpoints of each interval.

2 2 3

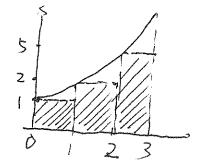
Each rectangle

has equal with

 $4 = \frac{3-0}{3} = 1$

1.1+1.2+1.5=1.(1+2+5)=8

Remark:
The actual area of the ander the graph
should be in between 8 and 17.



If we divide the whole interval more subintervals (thinner and thinner) and the same process, we may get better estimate.

g.1.	Frel	de upper	and i	dwer si	um, uler	v we	estimots	2 the	atea.	2. 132360	10,
(f15)	under	the ghat	sh of	fx)=1	+six f	iom X=	0 to X	=22	usilp		
		ectargles					r of each			_ 1	
Solution:		intorval: Ed			a. /l		变元			-2	
(Heigh	ts.) Tak	de: ×	Ó	Z 2	ん	_	27		J		
		f«>.	/			0	1				6
Upper	sum							5	至九	<u>3</u> Z.	7
$=\frac{L}{z}$.	f(至) +	至(金)	+ 受fa	3) + 憂·	f(2z) = ==================================	(2+2	+1+1>)=3乙.		L	
Lawer	3W0)										
二 <u>是</u> ,.	f(0) +	受机	当代	(1) + 至	f(要)=委((1+1+	0+0)	= て、			
	sun:				dur sum:						
	1			.							
Removik: 1	left and	Right sun	are no	t neces	sarily the	uppor/la	War SUN	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			
In eg./.	bft s	Right sun sun=复任	(0)+f(生元)	+f(x)+	f(登)],够	kt swn=	受什么	+f(x)+f	(圣)++	(m)	
ustance	is the	z area q	r woor	the gra	th of 1	VE) (on be ostin	sted by	tectarol	le mort	vd
eg Z. G	we the	following the distance of to to to	table	of VE.). t	0	2 4	÷ 6	8	10	
Ė	st note	the distance	e thivel	ed	V(t)	56	\$\$ 50	45	3	ζ,	
fic	m to	o to tel	'o using	5 6	me interva	ds.			,		
-7	7.70.	3 90 11000	- 2.(20+22	+52+4	++21)				
Ryht.	adpolits	est/note	= 2.(55 + 52	+45+3	1+3) _.				
•	-			_						-Adventising	
Make	the to	. Refoole ble for	alt)	ud conc	mute de	Sum	in of	att!	, , , , , , , , , , , , , , , , , , ,	0	
		(f		_		200.0	T wea	a for h	LOGAPLA	2岁,	

84.1 Part II. S Appendix E Sigma Notation

end with
$$\rightarrow n$$

sum $\rightarrow \sum_{i=m} a_i = a_m + a_{m+1} + \cdots + a_n$
start with $i=m$ i is the index.

eg.
$$f(i) = \frac{1}{2}i$$
, $m = 1$, $\sum_{i=1}^{n} f(i) = \sum_{i=1}^{n} 2i = \frac{1}{2}i = \frac{1}{2}i + \frac{1}{2}$

eg 2 m=1, n=5,
$$\frac{5}{2}$$
 (s(i π) = (s) π + (s) 2π + (s) 3π + (s) 4π + (s) 5π = -1 + 1 - 1 = -1

Some formulas in the formula sheet.

eg3 Evaluate the sum
$$\sum_{k=1}^{43} (7k-8) = \sum_{k=1}^{43} 7k - \sum_{k=1}^{43} 8$$

= $7 \cdot \sum_{k=1}^{43} k - \sum_{k=1}^{43} 8$
Formula: $\sum_{i=1}^{n} i = \frac{n(n+i)}{2}$. = $7 \cdot \frac{43(43+1)}{2} - 8 \cdot 43 = .6278$

Some Notesian is helpful to rewrite the sum for the area problem when we have n rectorgles.

Pertocondoints sum: $\Delta x. f(x) + \Delta x. f(x) + ... + \Delta x. f(x) = \sum_{i=1}^{n} \Delta x. f(x_i)$

As the have more and more thinner rectangles, (i.e., as in tends to infirming), the above sum approaches the actual area under the graph. Use limit notation, we have

Area = lim \(\frac{1}{2} \) fixi). \(\infty \), we all such sum the Riemann sum.

eg 5. Columbote the area under the wive fix = 2x from x=2 to x=3 by using the Riemann sum Area = $\lim_{n\to\infty} \frac{1}{1-1} f(x_i) \cdot dx$, where x_i, dx are as follow

(a) [3.6] is divided into n equal subincervals of length ox $2X = \frac{1}{n} = \frac{3}{n}$ (b) Xi is the right endpoint of the $\frac{3}{n}$ Xi Xi Xi $\frac{3}{n}$ Xi $\frac{3}{n}$ Xi $\frac{3}{n}$

 $X_1=3+4X_1$, $X_2=X_1+4X_1=3+2+4X_2$,, $X_i=3+2+4X_1$ ith subinerval

Xi=3+i·ax=3+i·奇、, i=1,2,-,,n

(c) $f(x_i) = 2x_i = 2(3+i\cdot\frac{3}{6})$ is the height of the ith rectangle. Area of the ith rectangle $f(x_i) \cdot \Delta x = 2(3 + i \cdot \frac{3}{0}) \cdot \frac{3}{0}$

(d) the sum of all these n recongles! area

 $(t\omega) + t\omega + t\omega = \frac{1}{2}(3+i\cdot\frac{3}{2})\cdot\frac{3}{2}$ (Note that 18, 18 are fixed) $=\frac{18}{9}\cdot 11 + \frac{18}{12}\cdot \sum_{i=1}^{n} i$ $= 18 + \frac{18}{0} \cdot \frac{\text{D(DH)}}{2}$

le) Take the limit as n goes to the

Area = $\lim_{n \to \infty} \frac{1}{1} \int_{-\infty}^{\infty} f(x) dx = \lim_{n \to \infty} \left[18 + \frac{9(n+1)}{n} \right] = 18 + \lim_{n \to \infty} \frac{9n+9}{n}$

Remark: The Area can also be adjusted from the graph

=18 + Wm 9 = 27 $Area = \pm \cdot 3 \cdot (6+12) = 27$

=18 + 9(n+1)

Hints for webwork Prob 10. Calculate de crea under the cute fex=x2+6 from x3 to x=8 using Riemann Sum. (a) $\Delta X = \frac{8-3}{n-n}$ length of each subinterval 3 X1 X2 X2 2 (b). $x_i = 3 + i \cdot sx = 3 + i \cdot \frac{5}{10}$, ight endpoint of the ith intend X=3+1.5 (10) Area of the ith rectangle f(x).0x = (xi+6).0x = ((3+i/2)2+6).5=(9+30.i+222+6).5 $=\frac{45}{n}+\frac{150}{17}\cdot \hat{i}+\frac{125}{13}\cdot \hat{i}^2+\frac{30}{11}$ (d) Riemann Sum 之似义= 三(75+ 150 i + 125 i) $=\frac{75}{0}+\frac{150}{10}\cdot\hat{i}+\frac{125}{103}\cdot\hat{i}^2$ $= \frac{275}{150} + \frac{1100}{150} \cdot i + \frac{1125}{150} \cdot i^2$ $= \frac{75}{0}n + \frac{150}{0^2} \cdot \frac{n(n+1)}{2} + \frac{125}{0^3} \cdot \frac{n(n+1)(n+1)}{2}$ $=75 + 75 \cdot \frac{n+1}{n} + \frac{125}{6} \cdot \frac{(n+1)\cdot(2n+1)}{n^2}$ (e) Area-lim (75 +75. n+1 + 125. (n+1) (20+1) = 75 + lim 75. mt + lim 75. (nux) (nux) Highest order mle. = 75 + 75 + 8.2 = 150 + 13 Prob 3. If 5-10+15-20+25 = \(\frac{5}{2}g(i) \), what is g(i)? 5=5.1, +0=5.(-2), 15=5.(-3), -20=5.(-4), 25=5.5 =5.1.41 =5.2.41 =5.3.41 =5.4.41 =5.5.41⇒ g(i) = 5·i·(-1)1-1 Prob 6. $\frac{75}{5}(-4)^2 = -4 \cdot \frac{75}{5}(^2 = -4 \cdot \frac{75\cdot (75+1)(275+1)}{5} = -4 \cdot \frac{75\cdot 76\cdot 151}{5}$ $\frac{2}{5}(41^{\circ}) = -4 \cdot \frac{3(3+1)(2\cdot3+1)}{5} = 4 \cdot \frac{3\cdot4\cdot7}{5}$ Z(412) = Z(412) - Z(412) = -4 7576.151 - (-4 34.7)